Rule Extraction from Radial Basis Function Networks by Using Support Vectors

نویسندگان

  • Haydemar Núñez
  • Cecilio Angulo
  • Andreu Català
چکیده

In this work, a procedure for rule extraction from radial basis function (RBFN) networks is proposed. The algorithm is based on the use of a support vector machine (SVM) as a frontier pattern selector. By using geometric methods, centers of the RBF units are combined with support vectors in order to construct regions (ellipsoids or hyper-rectangles) in the input space, which are later translated to if-then rules. Additionally, the support vectors are used to determine overlapping between classes and to refine the rule base. The obtained experimental results indicate that a very high fidelity between RBF network and the extracted set of rules can be achieved with low overlapping between classes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Support Vector Machine based Hybrid Classifiers and Rule Extraction thereof: Application to Bankruptcy Prediction in Banks

Support vector machines (SVMs) have proved to be a good alternative compared to other machine learning techniques specifically for classification problems. However just like artificial neural networks (ANN), SVMs are also black box in nature because of its inability to explain the knowledge learnt in the process of training, which is very crucial in some applications like medical diagnosis, sec...

متن کامل

Rule Based Learning Systems from SVM and RBFNN

Two methods for the symbolic interpretation of both, Support Vector Machines (SVM) and Radial Basis Function Neural Networks (RBFNN) are proposed. These schemes, based on the combination of support vectors and prototype vectors by means of geometry produce rules in the form of ellipsoids and hyper-rectangles. Results obtained from a certain number of experiments on artificial and real data base...

متن کامل

Long-Term Peak Demand Forecasting by Using Radial Basis Function Neural Networks

Prediction of peak loads in Iran up to year 2011 is discussed using the Radial Basis Function Networks (RBFNs). In this study, total system load forecast reflecting the current and future trends is carried out for global grid of Iran. Predictions were done for target years 2007 to 2011 respectively. Unlike short-term load forecasting, long-term load forecasting is mainly affected by economy...

متن کامل

Rule-Extraction from Radial Basis Function Networks

Radial basis neural (RBF) networks provide an excellent solution to many pattern recognition and classi cation problems. However, RBF networks are also a local representation technique that enables the easy conversion of the hidden units into symbolic rules. This paper examines rules extracted from RBF networks. We use the iris ower classication task and a vibration diagnosis classi cation task...

متن کامل

Novel Radial Basis Function Neural Networks based on Probabilistic Evolutionary and Gaussian Mixture Model for Satellites Optimum Selection

In this study, two novel learning algorithms have been applied on Radial Basis Function Neural Network (RBFNN) to approximate the functions with high non-linear order. The Probabilistic Evolutionary (PE) and Gaussian Mixture Model (GMM) techniques are proposed to significantly minimize the error functions. The main idea is concerning the various strategies to optimize the procedure of Gradient ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002